Polyvinyl chloride is produced by polymerization of the vinyl chloride monomer (VCM), as shown. Since about 57% of its mass is chlorine, creating a given mass of PVC requires less petroleum than many other polymers.[citation needed] However, because PVC also has a much higher density than hydrocarbon polymers, and chlorine production has its own energy requirements, this ends up being of little practical relevance in the production of most solid objects.
The polymerisation of vinyl chloride
By far the most widely used production process is suspension polymerization. In this process, VCM and water are introduced into the polymerization reactor and a polymerization initiator, along with other chemical additives, are added to initiate the polymerization reaction. The contents of the reaction vessel are continually mixed to maintain the suspension and ensure a uniform particle size of the PVC resin. The reaction is exothermic, and thus requires a cooling mechanism to maintain the reactor contents at the appropriate temperature. As the volumes also contract during the reaction (PVC is denser than VCM), water is continually added to the mixture to maintain the suspension.
Once the reaction has run its course, the resulting PVC slurry is degassed and stripped to remove excess VCM (which is recycled into the next batch) then passed though a centrifuge to remove most of the excess water. The slurry is then dried further in a hot air bed and the resulting powder sieved before storage or pelletization. In normal operations, the resulting PVC has a VCM content of less than 1 part per million.
Other production processes, such as micro-suspension polymerization and emulsion polymerization, produce PVC with smaller particle sizes (10 μm vs. 120-150 μm for suspension PVC) with slightly different properties and with somewhat different sets of applications.
The product of the polymerization process is unmodified PVC. Before PVC can be made into finished products, it almost always requires conversion into a compound by the incorporation of additives such as heat stabilizers, UV stabilizers, lubricants, plasticizers, processing aids, impact modifiers, thermal modifiers, fillers, flame retardants, biocides, blowing agents and smoke suppressors, and, optionally pigments
No comments:
Post a Comment